Step of Proof: squash_functionality_wrt_iff
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
squash
functionality
wrt
iff
:
P
,
Q
:
. {
P
Q
}
{(
P
)
(
Q
)}
latex
by
InteriorProof
((((((((Unfold `guard` 0)
CollapseTHENM (RepeatMFor 4 (D 0)))
)
CollapseTHENM (Repe
CollapseTHENM (BLemma `squash_functionality_wrt_implies`))
)
CollapseTHENM (
CollapseTHENM (
HypBackchain))
)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n
CollapseTHENA ((Au
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
,
x
:
A
.
B
(
x
)
Lemmas
iff
wf
origin